
Swing Data Binding

Karsten Lentzsch
 www.JGoodies.com

:: JGOODIES :: :: JGOODIES :: Java User Interface DesignJava User Interface Design

Presentation Goals

Understand MVC and Swing models.

Learn how to bind domain objects

to Swing UI components.

:: JGOODIES :: :: JGOODIES :: Java User Interface DesignJava User Interface Design

Speaker Qualifications

 Karsten builds elegant Swing apps

 works with Objects since 1990

 helps others with UI and architectures

 provides libraries that complement Swing

 provides examples for Swing architectures

 writes about Java desktop issues

:: JGOODIES :: :: JGOODIES :: Java User Interface DesignJava User Interface Design

Agenda

 Introduction

 MVC and Swing

 How to bind single values?

 How to bind lists

 A 3-tier Swing architecture

 How binding works in projects

:: JGOODIES :: :: JGOODIES :: Java User Interface DesignJava User Interface Design

Swing Building Blocks

JRE / Swing

Panels

Foundation

Basic Libraries

Application Frame

Helper Code/Libs

Validation

Applications

BindingLayout

Application 1

Appearance

Components, Application Management, etc.

Utils Help Printing

Application 2

:: JGOODIES :: :: JGOODIES :: Java User Interface DesignJava User Interface Design

Swing Building Blocks

JRE / Swing

Panels

Foundation

Basic Libraries

Application Frame

Helper Code/Libs

Validation

Applications

BindingLayout

Application 1

Appearance

Components, Application Management, etc.

Utils Help Printing

Application 2

:: JGOODIES :: :: JGOODIES :: Java User Interface DesignJava User Interface Design

Questions

 Where do I find MVC in Swing?

 How to structure a Swing application?

 What is part of the model?

 How do I choose models?

 How to build a view?

 What does a controller do?

 Do I need controllers?

:: JGOODIES :: :: JGOODIES :: Java User Interface DesignJava User Interface Design

I - Basics

MVC and Swing

:: JGOODIES :: :: JGOODIES :: Java User Interface DesignJava User Interface Design

Before MVC

State

State Operations
(Control Behavior)

Painting Code

How to live without MVC?

:: JGOODIES :: :: JGOODIES :: Java User Interface DesignJava User Interface Design

Before MVC: 2 Layers

State

State Operations

Painting Code

Client

Server

:: JGOODIES :: :: JGOODIES :: Java User Interface DesignJava User Interface Design

Separate Domain from Views

 Domain logic contains no GUI code

 Presentation handles all UI issues

 Advantages:
– Each part is easier to understand

– Each part is easier to change

:: JGOODIES :: :: JGOODIES :: Java User Interface DesignJava User Interface Design

Domain and Presentation

State

State Modifications

Painting Code

Presentation Layer

Domain Layer

:: JGOODIES :: :: JGOODIES :: Java User Interface DesignJava User Interface Design

Loose Coupling

 The domain shall not reference the GUI

 Presentation refers to domain and can
modify it

 Advantages:
– Reduces complexity

– Allows to build multiple presentations
of a single domain object

:: JGOODIES :: :: JGOODIES :: Java User Interface DesignJava User Interface Design

Loose Coupling

State

State Modifications

Painting Code

reports changes refers to/modifies

:: JGOODIES :: :: JGOODIES :: Java User Interface DesignJava User Interface Design

Separate View and Controller

If you separate the painting code (View)

from the state modifications (Controller),

it's easier to:

 combine views and controllers

 reuse views and controllers

:: JGOODIES :: :: JGOODIES :: Java User Interface DesignJava User Interface Design

MVC

Model

ControllerView

changesreports

refers to

:: JGOODIES :: :: JGOODIES :: Java User Interface DesignJava User Interface Design

MVC

Model

ControllerView

changesreports

refers to

:: JGOODIES :: :: JGOODIES :: Java User Interface DesignJava User Interface Design

UI State vs. Data State

We can categorize models into:

 domain related

 GUI related

GUI state can make up its own layer.

:: JGOODIES :: :: JGOODIES :: Java User Interface DesignJava User Interface Design

MVC plus Model Layer

Domain Model

ControllerView Presentation Layer

Domain Layer

GUI Model (GUI) Model Layer

:: JGOODIES :: :: JGOODIES :: Java User Interface DesignJava User Interface Design

Candidates for a Model Layer

 TreeModel: converts a domain object tree
into a form useable for JTree

 Models that do not belong to the domain:
● GUI state, e. g. mouse pressed, mouse over
● Password in a login dialog
● Search values

:: JGOODIES :: :: JGOODIES :: Java User Interface DesignJava User Interface Design

Conbining MVC Triads

A typical MVC UI combines MVC triads.

 Defines models as a graph of domain objects

 Composes larger views from small views

 Composes controllers from subcontrollers

:: JGOODIES :: :: JGOODIES :: Java User Interface DesignJava User Interface Design

MVC Triads with Model Layer

DO

CV
Presentation Layer

Domain Layer

M
Model Layer

V

V

C

C

M

M

Domain Object

DO

:: JGOODIES :: :: JGOODIES :: Java User Interface DesignJava User Interface Design

Factoring out the Look&Feel

Swing can change its appearance and behavior

or in other words: look and feel.

:: JGOODIES :: :: JGOODIES :: Java User Interface DesignJava User Interface Design

M-JComponent-VC

Controller

View

Swing Model(s)

JComponent

:: JGOODIES :: :: JGOODIES :: Java User Interface DesignJava User Interface Design

MetalCheckBoxUI

Example: JCheckBox

Event
Handling

Painting

ToggleButtonModel

JCheckBox

:: JGOODIES :: :: JGOODIES :: Java User Interface DesignJava User Interface Design

MetalCheckBoxUI

JCheckBox: Some Details

Event
Handling

Painting

ToggleButtonModel

JCheckBox

Basic-
ButtonUI

MouseListener

MouseMotionListener

ChangeListener

PropertyChangeListener

FocusListener

Change-
Listener

:: JGOODIES :: :: JGOODIES :: Java User Interface DesignJava User Interface Design

JCheckBox: Types of State

ToggleButtonModel

JCheckBox

enabled
text, ...

selected

 armed
 pressed, ...

GUI State

Data State

GUI Properties

:: JGOODIES :: :: JGOODIES :: Java User Interface DesignJava User Interface Design

JCheckBox: Binding Task

ToggleButtonModel

JCheckBox

selected Data Model

GUI Component

anAlbum
title=”Preludes”
classical=true

Domain object

:: JGOODIES :: :: JGOODIES :: Java User Interface DesignJava User Interface Design

JCheckBox: Binding Task

aToggleButtonModel

aJCheckBox

selected=true Data Model

GUI Component

anAlbum
title=”Preludes”
classical=true

Domain Object

connect,
synchronize

:: JGOODIES :: :: JGOODIES :: Java User Interface DesignJava User Interface Design

Summary

 Swing doesn't use the original MVC

 Swing uses an extended form of MVC

 Swing shares the motivation behind MVC

 Swing adds features to the original MVC

Therefore, we will search and compare

binding solutions for Swing, not MVC.

:: JGOODIES :: :: JGOODIES :: Java User Interface DesignJava User Interface Design

II - Binding Values

How to connect
domain objects with UI components?

:: JGOODIES :: :: JGOODIES :: Java User Interface DesignJava User Interface Design

Binding Tasks

 Read and write domain object properties

 Get and set GUI model state

 Report and handle changes in the domain

 Buffer values – delay until OK pressed

 Change management – commit required?

 Indirection as in an Master-Detail view

 Convert types, e. g. Date to String

:: JGOODIES :: :: JGOODIES :: Java User Interface DesignJava User Interface Design

Copying Values to Views

aToggleButtonModel

aJCheckBox

selected=false

anAlbum
title=”Preludes”
classical=true

1. Read

#isClassical

#setSelected
2. Write

:: JGOODIES :: :: JGOODIES :: Java User Interface DesignJava User Interface Design

Copying Values to Views

aToggleButtonModel

aJCheckBox

selected=true

anAlbum
title=”Preludes”
classical=true

3. Value changed

:: JGOODIES :: :: JGOODIES :: Java User Interface DesignJava User Interface Design

Copying Values to the Domain

aToggleButtonModel

aJCheckBox

selected=true

anAlbum
title=”Preludes”
classical=false

2. Write

#setClassical

#isSelected
1. Read

:: JGOODIES :: :: JGOODIES :: Java User Interface DesignJava User Interface Design

Copying Values to the Domain

aToggleButtonModel

aJCheckBox

selected=true

anAlbum
title=”Preludes”
classical=true 3. Value changed

:: JGOODIES :: :: JGOODIES :: Java User Interface DesignJava User Interface Design

Code Example: Copy to View

public void modelToView() {

 Album anAlbum = getEditedAlbum();

 classicalBox.setSelected(
 anAlbum.isClassical());

 titleField.setText(
 anAlbum.getTitle());
 ...
}

:: JGOODIES :: :: JGOODIES :: Java User Interface DesignJava User Interface Design

Code Example: Copy to Domain

public void viewToModel() {

 Album anAlbum = getEditedAlbum();

 anAlbum.setClassical(
 classicalBox.isSelected();

 anAlbum.setTitle(
 titleField.getText();
 ...
}

:: JGOODIES :: :: JGOODIES :: Java User Interface DesignJava User Interface Design

Copying: Pros and Cons

 Easy to understand, easy to explain

 Works in almost all situations

 Easy to debug – explicit data operations

 Blows up the view code

 It's difficult to synchronize views

 Handles domain changes poorly

:: JGOODIES :: :: JGOODIES :: Java User Interface DesignJava User Interface Design

Alternative

aToggleButtonModel

aJCheckBox

selected=false

anAlbum
title=”Preludes”
classical=true

Note: you can't share the model

:: JGOODIES :: :: JGOODIES :: Java User Interface DesignJava User Interface Design

aBook
title=”Swing”
available=true

Direct Adapter: TableModel

myAlbumTableAdapter

aJTable

aBook
title=”Swing”
available=true

anAlbum
title=”Preludes”
classical=true

TableModelimplements

Converts Album properties
to TableModel

:: JGOODIES :: :: JGOODIES :: Java User Interface DesignJava User Interface Design

Direct Adapter: JCheckBox

aJCheckBox

anAlbum
title=”Preludes”
classical=true

anAlbumClassical-
ToggleButtonAdapter

ToggleButtonModelimplements

Converts Album#classical
to ToggleButtonModel

:: JGOODIES :: :: JGOODIES :: Java User Interface DesignJava User Interface Design

Problem with Direct Adapters

Requires an individual adapter for each

domain object property.

Similar to incompatible electric connectors.

Code is all the same except for the methods

that read and write domain properties.

:: JGOODIES :: :: JGOODIES :: Java User Interface DesignJava User Interface Design

Concept

 Use a universal model (ValueModel)

 Convert domain properties to ValueModel

 Build converters from ValueModel
to Swing models: ToggleButtonModel, etc.

 We end up with about 15 classes.

:: JGOODIES :: :: JGOODIES :: Java User Interface DesignJava User Interface Design

ValueModel and Adapter

aToggleButtonAdapter

aJCheckBox

anAlbum
title=”Preludes”
classical=true

aValueModel

:: JGOODIES :: :: JGOODIES :: Java User Interface DesignJava User Interface Design

ValueModel: Requirements

 We want to get its value

 We want to set its value

 We want to observe changes

:: JGOODIES :: :: JGOODIES :: Java User Interface DesignJava User Interface Design

The ValueModel Interface

public interface ValueModel {

 Object getValue();

 void setValue(Object newValue);

 void addChangeListener(ChangeListener l);

 void removeChangeListener(ChangeListener l);
}

:: JGOODIES :: :: JGOODIES :: Java User Interface DesignJava User Interface Design

Which Event Type?

 ChangeEvent reports no new value;
must be read from the model – if necessary

 PropertyChangeEvent
provides the old and new value;
both can be null

:: JGOODIES :: :: JGOODIES :: Java User Interface DesignJava User Interface Design

ValueModel & PropertyAdapter

aToggleButtonAdapter

aJCheckBox

anAlbum
title=”Preludes”
classical=true

ToggleButtonModel

aPropertyAdapter
propertyName=”classical” ValueModel

implements

implements

:: JGOODIES :: :: JGOODIES :: Java User Interface DesignJava User Interface Design

Domain Object Requirements

 We want to get and set values

 We want to do so in a uniform way

 Changes shall be observable

 That's what Java Beans provide.

:: JGOODIES :: :: JGOODIES :: Java User Interface DesignJava User Interface Design

(Bound) Bean Properties

 Java Beans have properties,
that we can get and set in a uniform way.

 Bean properties are bound,
if we can observe property changes
by means of PropertyChangeListeners.

:: JGOODIES :: :: JGOODIES :: Java User Interface DesignJava User Interface Design

PropertyAdapter

 BeanAdapter and PropertyAdapter
convert Bean properties to ValueModel

 Observe bound properties

 Use Bean Introspection that in turn uses
Reflection to get and set bean properties

:: JGOODIES :: :: JGOODIES :: Java User Interface DesignJava User Interface Design

ValueModel & PropertyAdapter

aToggleButtonAdapter

aJCheckBox

anAlbum (Bean)
title=”Preludes”
classical=true

aPropertyAdapter
propertyName=”classical” ValueModel

implements

get/set

:: JGOODIES :: :: JGOODIES :: Java User Interface DesignJava User Interface Design

Build a Chain of Adapters

private void initComponents() {

 Album album = getEditedAlbum();

 ValueModel aValueModel =
 new PropertyAdapter(album, “classical”);

 JCheckBox classicalBox = new JCheckBox();
 classicalBox.setModel(
 new ToggleButtonAdapter(aValueModel));
}

:: JGOODIES :: :: JGOODIES :: Java User Interface DesignJava User Interface Design

ComponentFactory

private void initComponents() {

 Album album = getEditedAlbum();

 JCheckBox classicalBox =
 ComponentFactory.createCheckBox(
 album,
 Album.PROPERTYNAME_CLASSICAL);
}

:: JGOODIES :: :: JGOODIES :: Java User Interface DesignJava User Interface Design

Buffering: Delaying Commits

 Selecting the JCheckBox changes
the bound domain property immediately.

 Often we want to delay value commits
until the user presses OK or Accept.

 We can buffer in the adapter chain
or in the domain layer.

:: JGOODIES :: :: JGOODIES :: Java User Interface DesignJava User Interface Design

BufferedValueModel

aToggleButtonAdapter

aJCheckBox

anAlbum
classical=true

aPropertyAdapter

ValueModel

implements

aBufferedValueModel implements

aTriggerChannel

Indicates Commit or Flush

:: JGOODIES :: :: JGOODIES :: Java User Interface DesignJava User Interface Design

Sharing a Buffer Trigger

aToggleButtonAdapter

aJCheckBox

anAlbum
title=”Preludes”
classical=true

aPropertyAdapter

aBufferedValueModel

aTrigger-
Channel

aDocumentAdapter

aJTextField

aPropertyAdapter

aBufferedValueModel

:: JGOODIES :: :: JGOODIES :: Java User Interface DesignJava User Interface Design

Adapter vs. Connector

aDocumentAdapter

aJTextField

anAlbum
title=”Preludes”

releaseDate=Dec-5-1967

aPropertyAdapter
for Album#title

aPropertyConnector

aJFormattedTextField

aPropertyAdapter
for Album#releaseDate

:: JGOODIES :: :: JGOODIES :: Java User Interface DesignJava User Interface Design

Converter vs. Formatter

aDocumentAdapter

aJTextField

anAlbum
releaseDate=Dec-5-1967

aPropertyAdapter
for Album#releaseDate

aPropertyConnector

aJFormattedTextField

aPropertyAdapter
for Album#releaseDate

DateToStringConverter

Formatter

uses

:: JGOODIES :: :: JGOODIES :: Java User Interface DesignJava User Interface Design

Indirection

aToggleButtonAdapter

aJCheckBox

anAlbum
title=”Preludes”
classical=true

aPropertyAdapter
propertyName=”classical”

aBeanChannel

aDocumentAdapter

aJTextField

aPropertyAdapter
propertyName=”title”

anAlbum
title=”Etudes”
classical=true

Holds the
edited album

:: JGOODIES :: :: JGOODIES :: Java User Interface DesignJava User Interface Design

Indirection

aToggleButtonAdapter

aJCheckBox

anAlbum
title=”Preludes”
classical=true

aPropertyAdapter
propertyName=”classical”

aBeanChannel

aDocumentAdapter

aJTextField

aPropertyAdapter
propertyName=”title”

anAlbum
title=”Etudes”
classical=true

Holds the
edited album

:: JGOODIES :: :: JGOODIES :: Java User Interface DesignJava User Interface Design

III - Binding Lists

How to connect Lists of domain values
with Swing components?

:: JGOODIES :: :: JGOODIES :: Java User Interface DesignJava User Interface Design

List Binding Problems

List views require fine grained change events.

We want to observe list content changes.

Otherwise list views poorly handle

the selection and scroll state.

:: JGOODIES :: :: JGOODIES :: Java User Interface DesignJava User Interface Design

Requirements for a List Model

 Get list elements

 Provide the list size

 Report changes:
– if elements change

– if elements have been added

– if elements have been removed

The Swing class ListModel provides this.

:: JGOODIES :: :: JGOODIES :: Java User Interface DesignJava User Interface Design

ListModel Implementations

 ArrayListModel extends ArrayList,
implements ListModel

 LinkedListModel extends LinkedList,
implements ListModel

 We can operate on List and
can observe ListModel changes.

:: JGOODIES :: :: JGOODIES :: Java User Interface DesignJava User Interface Design

aBook

Binding Lists to JList

anArrayListModel

aJList

aBook
anAlbum

ListModel

List

implements

:: JGOODIES :: :: JGOODIES :: Java User Interface DesignJava User Interface Design

aBook

Binding Lists to JTable

anArrayListModel

aJTable

aBook
anAlbum

anAlbumTableAdapter

ListModel

List

implements

TableModel
implements

:: JGOODIES :: :: JGOODIES :: Java User Interface DesignJava User Interface Design

Often: List with Single Selection

 We build a compound model that holds
the ListModel and a selection in the list.

 This model reports changes of:
– the selection

– the selection index

– the list contents

– the list

:: JGOODIES :: :: JGOODIES :: Java User Interface DesignJava User Interface Design

aSelectionInList

aBook

SelectionInList

aJList

aBook
anAlbum

SelectionHolder

SelectionAdapter

ListModel

:: JGOODIES :: :: JGOODIES :: Java User Interface DesignJava User Interface Design

aSelectionInList

aBook

Overview / Detail

aJList

aBook
anAlbum

SelectionHolder

SelectionAdapter

ListModel

aDocumentAdapter

aJTextField

aPropertyAdapter
propertyName=”title”

beanChannel

:: JGOODIES :: :: JGOODIES :: Java User Interface DesignJava User Interface Design

IV - Architecture

A 3-tier Swing client architecture

:: JGOODIES :: :: JGOODIES :: Java User Interface DesignJava User Interface Design

Design Goals

 Works with standard Swing components

 Works with custom Swing components

 Requires no special components

 Requires no special panels

 Integrates well with validation

 Works with different validation styles

:: JGOODIES :: :: JGOODIES :: Java User Interface DesignJava User Interface Design

3-Tier Client Architecture

DO

Presentation

Domain Layer

ListModel
Model Layer

DO

Domain Object

ValueModelAction

JList JButton JTextField

:: JGOODIES :: :: JGOODIES :: Java User Interface DesignJava User Interface Design

Benefit of 3 Layers

 Views are easy to build

 Views are decoupled

 Domain layer is separated

 Developers know where to put what code

 Synchronization is easy

 Decreased complexity

 Model operations located in a single layer

 Poor code limited to the model layer

:: JGOODIES :: :: JGOODIES :: Java User Interface DesignJava User Interface Design

View 2View 1

Multiple Views

Presentation

ListModel
Model Layer

ValueModelAction

JButton

JTextField

JList

JMenuItem

JLabel

:: JGOODIES :: :: JGOODIES :: Java User Interface DesignJava User Interface Design

Setting UI Properties: Actions

ListModel ValueModelAction

#enabled

JButton
#enabled

ButtonActionPropertyChangeListener

Updates button property
if the Action has changed

:: JGOODIES :: :: JGOODIES :: Java User Interface DesignJava User Interface Design

View

 GUI Model

Setting UI Properties

ValueModel

Updates textfield property
if the model has changed

JButton

JTextField

JList

ModelChangeHandler

Can provide
bound bean properties

:: JGOODIES :: :: JGOODIES :: Java User Interface DesignJava User Interface Design

Adapting Multiple Properties

Presentation

Domain Layer

Album
#title

#artist
#classical

BeanAdapter

JTextField JTextField JCheckBox

Vends PropertyAdapters

:: JGOODIES :: :: JGOODIES :: Java User Interface DesignJava User Interface Design

Example View Source Code

1) Variables for UI components

2) Constructors

3) Create, bind, configure UI components

4) Register GUI state handlers with the model

5) Build and return panel

6) Handlers that update GUI state

:: JGOODIES :: :: JGOODIES :: Java User Interface DesignJava User Interface Design

Example View 1/7

public final class AlbumView {

 // Refers to the model provider
 private AlbumPresentationModel model;

 // UI components
 private JTextField titleField;
 private JCheckBox classicalBox;
 private JButton buyNowButton;
 private JList referencesList;
 ...

:: JGOODIES :: :: JGOODIES :: Java User Interface DesignJava User Interface Design

Example View 2/7

public AlbumView(AlbumPresentationModel m) {

 // Store a ref to the presentation model
 this.model = m;

 // Do some custom setup.
 ...
}

:: JGOODIES :: :: JGOODIES :: Java User Interface DesignJava User Interface Design

Example View 3/7

private void initComponents() {
 titleField = ComponentFactory.createField(
 model.getTitleModel());
 titleField.setEditable(false);

 buyNowButton = new JButton(
 model.getBuyNowAction());

 referenceList = new JList(
 model.getReferenceListModel());
 referenceList.setSelectionModel(
 model.getReferenceSelectionModel());
 ...

:: JGOODIES :: :: JGOODIES :: Java User Interface DesignJava User Interface Design

Example View 4/7

private initEventHandling(){
 // Observe the model to update GUI state
 model.addPropertyChangeListener(
 “composerEnabled”,
 new ComposerEnablementHandler());
}

:: JGOODIES :: :: JGOODIES :: Java User Interface DesignJava User Interface Design

Example View 5/7

public JPanel buildPanel() {
 // Create, bind and configure components
 initComponents();

 // Register handlers that change UI state
 initEventHandling();

 FormLayout layout = new FormLayout(
 “right:pref, 3dlu, pref”, // 3 columns
 “p, 3dlu, p”); // 3 rows

 ...

:: JGOODIES :: :: JGOODIES :: Java User Interface DesignJava User Interface Design

Example View 6/7

 PanelBuilder builder =
 new PanelBuilder(layout);
 CellConstraints cc = new CellConstraints();

 builder.addLabel(“Title”, cc.xy(1, 1));
 builder.add(titleField, cc.xy(3, 1));
 builder.add(availableBox, cc.xy(3, 3));
 builder.add(buyNowButton, cc.xy(3, 5));
 builder.add(referenceList, cc.xy(3, 7));

 return builder.getPanel();
}

:: JGOODIES :: :: JGOODIES :: Java User Interface DesignJava User Interface Design

Example View 7/7

/* Listens to #composerEnabled, changes #enabled of the composerField. */
private class ComposerEnablementHandler
 implements PropertyChangeListener {

 public void propertyChange(
 PropertyChangeEvent evt) {

 composerField.setEnabled(
 model.isComposerEnabled());
 }
}

:: JGOODIES :: :: JGOODIES :: Java User Interface DesignJava User Interface Design

Simpler Event Handling

private initEventHandling(){
 // Synchronize model with GUI state
 PropertyConnector.connect(
 model, “composerEnabled”,
 composerField, “enabled”);
}

:: JGOODIES :: :: JGOODIES :: Java User Interface DesignJava User Interface Design

V - Field Report

How does Adapter Binding work?

:: JGOODIES :: :: JGOODIES :: Java User Interface DesignJava User Interface Design

Costs

 Adapter Binding:
– increases learning costs

– decreases production costs a little

– can significantly reduce change costs

:: JGOODIES :: :: JGOODIES :: Java User Interface DesignJava User Interface Design

Use a ComponentFactory!

 Encapsulate the creation of adapters from
ValueModel to Swing components.

 Some components have no appropriate
model, e. g. JFormattedTextField

 Vends components for ValueModels

:: JGOODIES :: :: JGOODIES :: Java User Interface DesignJava User Interface Design

Buffering

 Use BufferedValueModel judicously
– prevents validation on domain models

– makes it harder to use domain logic

 The client domain layer can buffer if:
– domain objects are copies

– domain objects temporarily accept invalid data

:: JGOODIES :: :: JGOODIES :: Java User Interface DesignJava User Interface Design

Performance

 Adapter chains fire many change events

 That seems to be no performance problem

 ListModel can improve the performance
compared to copying list contents

:: JGOODIES :: :: JGOODIES :: Java User Interface DesignJava User Interface Design

Debugging

 Copying approach is easy to debug;
you can see when where what happens.

 Adapter chains “move“ values implicitly;
it's harder to understand updates.

 Reflection and Introspection hide
who reads and writes values.

 Favor named over anonymous listeners.

:: JGOODIES :: :: JGOODIES :: Java User Interface DesignJava User Interface Design

Renaming Methods

 Reflection and Introspection make it
more difficult to rename bean properties
and their getter and setters.

 Use constants for bean property names!

 Obfuscators fail to detect the call graph.

:: JGOODIES :: :: JGOODIES :: Java User Interface DesignJava User Interface Design

When is Binding Useful?

 I guess that adapter binding can be applied
to about 80% of all Swing projects.

 However, you need at least one expert
who masters the binding classes.

:: JGOODIES :: :: JGOODIES :: Java User Interface DesignJava User Interface Design

Benefits of Adapter Binding

 Adapter binding can save a lot of code.

 Code is easier to read.

 Helps you separate code into layers.

 Can significantly reduce the complexity.

:: JGOODIES :: :: JGOODIES :: Java User Interface DesignJava User Interface Design

Where does Binding stand?

 Approach is 10 years old and stable.

 Architecture of the Java port is stable.

 Tests cover 90% of the classes.

 Little documentation.

 Tutorial is quite small.

:: JGOODIES :: :: JGOODIES :: Java User Interface DesignJava User Interface Design

End

Summary and References

:: JGOODIES :: :: JGOODIES :: Java User Interface DesignJava User Interface Design

Summary

 We've learned about MVC and Swing

 We've identified Binding tasks

 We've motivated the ValueModel interface

 We've learned how to bind single values

 We've learned how to bind lists

 We've seen a 3-tier architecture

:: JGOODIES :: :: JGOODIES :: Java User Interface DesignJava User Interface Design

JGoodies Swing Suite

JRE / Swing

Convenience Sources

Foundation

Basic Libraries

Framework

Helper Code

Validation

Applications

BindingForms

Example 1

Looks

User Interface Framework (UIF)

Example 2 Example n

:: JGOODIES :: :: JGOODIES :: Java User Interface DesignJava User Interface Design

References I

 Fowler's Enterprise Patterns
martinfowler.com/eaaDev/

 JGoodies Binding
binding.dev.java.net

 JGoodies Articles
www.JGoodies.com/articles/

 JGoodies Demos
www.JGoodies.com/freeware/

:: JGOODIES :: :: JGOODIES :: Java User Interface DesignJava User Interface Design

References II

 Sun's JDNC
jdnc.dev.java.net

 Understanding and Using ValueModels
c2.com/ppr/vmodels.html

 Oracle's JClient and ADF
otn.oracle.com/, search for 'JClient'

 Spring Rich Client Project
www.springframework.org/spring-rcp.html

:: JGOODIES :: :: JGOODIES :: Java User Interface DesignJava User Interface Design

Demo/Tutorial:

JGoodies Binding Tutorial
Binding Problems and Solutions

(in progress)

 Ships with the JGoodies Binding library.

:: JGOODIES :: :: JGOODIES :: Java User Interface DesignJava User Interface Design

Questions and Answers

:: JGOODIES :: :: JGOODIES :: Java User Interface DesignJava User Interface Design

End

Good Luck!

Karsten Lentzsch

