
Desktop Patterns
and

Data Binding for Swing

Karsten Lentzsch
 www.JGoodies.com

:: JGOODIES :: :: JGOODIES :: Java User Interface DesignJava User Interface Design

Presentation Goals

Learn how to organize presentation logic

and how to bind domain data to a Swing UI

:: JGOODIES :: :: JGOODIES :: Java User Interface DesignJava User Interface Design

Speaker Qualifications

 Karsten builds elegant Swing apps

 works with Objects since 1990

 helps others with UI and architectures

 provides libraries that complement Swing

 provides examples for Swing architectures

 writes about Java desktop issues

:: JGOODIES :: :: JGOODIES :: Java User Interface DesignJava User Interface Design

Agenda

 Introduction

 Separated Presentation & Autonomous View

 MVP, MVC and Presentation Model

 Synchronizing Single Values

 Field Report

:: JGOODIES :: :: JGOODIES :: Java User Interface DesignJava User Interface Design

Swing Building Blocks

JRE / Swing

Panels

Foundation

Basic Libraries

Application Frame

Helper Code/Libs

Validation

Applications

BindingLayout

Application 1

Appearance

Components, Application Management, etc.

Utils Help Printing

Application 2

:: JGOODIES :: :: JGOODIES :: Java User Interface DesignJava User Interface Design

Swing Building Blocks

JRE / Swing

Panels

Foundation

Basic Libraries

Application Frame

Helper Code/Libs

Validation

Applications

BindingLayout

Application 1

Appearance

Components, Application Management, etc.

Utils Help Printing

Application 2

:: JGOODIES :: :: JGOODIES :: Java User Interface DesignJava User Interface Design

Questions

 How and where is MVC used in Swing?

 How to structure my application?

 How to separate models?

 How to build a view?

 Who should handle events?

 Do I need a controller?

:: JGOODIES :: :: JGOODIES :: Java User Interface DesignJava User Interface Design

Strongly Recommended!

1. Use Separated Presentation!

2. Read “Organizing Presentation Logic”
in Fowler's “Further P of EAA”

3. Study MVP and Presentation Model

4. Know Observer

5. If appropriate split Autonomous View
using MVP or Presentation Model

:: JGOODIES :: :: JGOODIES :: Java User Interface DesignJava User Interface Design

I - Basics

Separated Presentation & Autonomous View

:: JGOODIES :: :: JGOODIES :: Java User Interface DesignJava User Interface Design

Not this way!

Domain Data

Presentation Logic

Presentation (Views)

Without Separated Presentation

:: JGOODIES :: :: JGOODIES :: Java User Interface DesignJava User Interface Design

Separate Domain from Views

 Domain logic contains no GUI code

 Presentation handles all UI issues

 Advantages:
– Each part is easier to understand

– Each part is easier to change

 Rule of thumb for domain data:
Do I need this class even without a GUI?

:: JGOODIES :: :: JGOODIES :: Java User Interface DesignJava User Interface Design

Separated Presentation

Domain Data

Presentation Logic

Presentation (Views)

Presentation Layer

Domain Layer

:: JGOODIES :: :: JGOODIES :: Java User Interface DesignJava User Interface Design

Loose Coupling

 The domain shall not reference the GUI

 Presentation refers to domain and can
modify it

 Advantages:
– Reduces complexity

– Allows to build multiple presentations
of a single domain object

:: JGOODIES :: :: JGOODIES :: Java User Interface DesignJava User Interface Design

Sep.Presentation with Observer

Domain Data

Presentation Logic

Presentation (Views)

notifies refers to/modifies

:: JGOODIES :: :: JGOODIES :: Java User Interface DesignJava User Interface Design

Autonomous View

Presentation Logic

Presentation (Views)

:: JGOODIES :: :: JGOODIES :: Java User Interface DesignJava User Interface Design

Autonomous View

 Often: one Java class per window/frame.

 Typically a subclass of JDialog, JFrame,
JPanel – which isn't really necessary.

 Appropriate pattern for smaller views.

 If the views and logic get more complex,
it's worth to separate concerns.

:: JGOODIES :: :: JGOODIES :: Java User Interface DesignJava User Interface Design

Autononous View: Details

JDialog

Presentation Logic

Component Configuration

Panel Building Code

:: JGOODIES :: :: JGOODIES :: Java User Interface DesignJava User Interface Design

Tips

 Build dialogs, frames, panel;
extend them only if necessary.

 Compose larger screens from small panels.
– in simple cases use build methods like

#buildMainPanel,#buildButtonBar, etc.

– otherwise use panels and nest subpanels.

 Consider separating the presentation logic
from the presentation.

:: JGOODIES :: :: JGOODIES :: Java User Interface DesignJava User Interface Design

When to Split Autonomous View?

 If you want to test the presentation logic.

 If you don't overview the source anymore,
for example because it exceeds your outline.

 If you share code with colleagues.

 If you want to reuse the logic or views.

:: JGOODIES :: :: JGOODIES :: Java User Interface DesignJava User Interface Design

Presentation Logic Separated

Domain Data

Presentation LogicPresentation (Views)

:: JGOODIES :: :: JGOODIES :: Java User Interface DesignJava User Interface Design

Advantages of the Separation I

 Makes testing easier (Fowler).

 GUI layer becomes quite simple, and is easy
to build, to understand, and to maintain.

 More team members can work on the GUI.

 GUI code can follow syntactical patterns.

 Makes it easier to work with visual builders.

:: JGOODIES :: :: JGOODIES :: Java User Interface DesignJava User Interface Design

Advantages of the Separation II

 The complex logic is easier to overview.

 The separation helps us structure our work.

 Simplifies team synchronisation.

 Allows to build “forbidden zones”
– for team members

– before you ship a new release

:: JGOODIES :: :: JGOODIES :: Java User Interface DesignJava User Interface Design

Disadvantages of the Separation

 More work.

 Requires to work with a set of related classes
instead of a single class.

Typically you benefit from the separation.

:: JGOODIES :: :: JGOODIES :: Java User Interface DesignJava User Interface Design

II – Splitting Autonomous View

MVP, MVC and Presentation Model

:: JGOODIES :: :: JGOODIES :: Java User Interface DesignJava User Interface Design

Model-View-Presenter (MVP)

Model
(Domain data)

Presenter
(Presentation logic)

View
(Painting code)

reads/modifies

refers to

:: JGOODIES :: :: JGOODIES :: Java User Interface DesignJava User Interface Design

MVP

 The View
– holds the GUI state, for example

a JTextField with Text and Enablement

 The Presenter
– reads domain data and copies them to the

components of the views

– handles GUI events and modifies
the GUI state in the view

– modifies domain data using GUI data

:: JGOODIES :: :: JGOODIES :: Java User Interface DesignJava User Interface Design

MVP

Domain Data

Presenter

• reads domain data
• sets GUI state
• handles events
• changes the domain

View

reads/modifies

Textfield

Checkbox

Button

Window

builds

:: JGOODIES :: :: JGOODIES :: Java User Interface DesignJava User Interface Design

MVP vs. MVC

Differences and the Swing-MVC-Variant

:: JGOODIES :: :: JGOODIES :: Java User Interface DesignJava User Interface Design

MVC

Model

ControllerView

modifiesnotifies

refers to

:: JGOODIES :: :: JGOODIES :: Java User Interface DesignJava User Interface Design

MVC

Model

ControllerView

modifiesnotifies

refers to

:: JGOODIES :: :: JGOODIES :: Java User Interface DesignJava User Interface Design

MVC with Model Layer

Domain Model

ControllerView Presentation Layer

Domain Layer

GUI Model Model Layer

:: JGOODIES :: :: JGOODIES :: Java User Interface DesignJava User Interface Design

Factoring out the Look&Feel

Swing can change the application's
appearance and behavior (look & feel).

 Views and Controller are separated from
the UI components and are put together
as a UI Delegate.

:: JGOODIES :: :: JGOODIES :: Java User Interface DesignJava User Interface Design

M-JComponent-VC

Controller

View

Swing Model(s)

JComponent

:: JGOODIES :: :: JGOODIES :: Java User Interface DesignJava User Interface Design

MetalCheckBoxUI

Example: JCheckBox

Event
Handling

Painting

ToggleButtonModel

JCheckBox

:: JGOODIES :: :: JGOODIES :: Java User Interface DesignJava User Interface Design

MetalCheckBoxUI

JCheckBox: Some Details

Event
Handling

Painting

ToggleButtonModel

JCheckBox

Basic-
ButtonUI

MouseListener

MouseMotionListener

ChangeListener

PropertyChangeListener

FocusListener

Change-
Listener

:: JGOODIES :: :: JGOODIES :: Java User Interface DesignJava User Interface Design

Summary

 Swing doesn't use the original MVC

 Swing uses an extended form of MVC

 Swing shares the motivation behind MVC

 Swing adds features to the original MVC

 UI delegates are both view and controller

 MVC is for components,
MVP for applications

:: JGOODIES :: :: JGOODIES :: Java User Interface DesignJava User Interface Design

MVP in Swing

Domain Data

Presenter

Present. logic:
on checkbox
selection
•change text
•disable Button

View

JCheckBox

MetalCheckBoxUI

Event
Handling

Painting
JTextField

JButton

:: JGOODIES :: :: JGOODIES :: Java User Interface DesignJava User Interface Design

Presentation Model (PM)

Model
(Domain Data)

Presentation Model
(GUI State + Presentation Logic)

View
(Painting Code)

reads/modifies

refers to

:: JGOODIES :: :: JGOODIES :: Java User Interface DesignJava User Interface Design

Presentation Model (PM)

Model
(Domain Data)

Presentation Model
(GUI State + Presentation Logic)

View
(Painting Code)

reads/modifies

refers to

:: JGOODIES :: :: JGOODIES :: Java User Interface DesignJava User Interface Design

Presentation Model

 The View
– consists only of GUI components

– observes changes in the Presentation Model

 The Presentation Model
– contains GUI state and presentation logic

– reads domain to update its GUI state

– handles GUI events by changing
its GUI state; then reports changes

– modifies domain data using its GUI state

:: JGOODIES :: :: JGOODIES :: Java User Interface DesignJava User Interface Design

Presentation Model

Domain Data

Presentation Model

View

Textfield CheckBox Button

Window

builds

Text Model Check Model Button Model

:: JGOODIES :: :: JGOODIES :: Java User Interface DesignJava User Interface Design

MVP vs. Presentation Model

 Presenter refers to the View, PM does not
refer (directly) to the View.

 In MVP the View holds the GUI state.

 The PM holds the GUI state itself.

 The Presenter changes GUI state in the View

 The PM changes its own GUI state and
reports changes to all its View.

:: JGOODIES :: :: JGOODIES :: Java User Interface DesignJava User Interface Design

MVP

Model
(Domain Data)

Presenter
(Presentation Logic)

View
(Painting Code)

reads/modifies

refers to

:: JGOODIES :: :: JGOODIES :: Java User Interface DesignJava User Interface Design

Presentation Model

Model
(Domain Data)

Presentation Model
(GUI state + Presentation Logic)

View
(Painting Code)

reads/modifies

refers to

:: JGOODIES :: :: JGOODIES :: Java User Interface DesignJava User Interface Design

MVP in Swing: GUI State

Domain Data

Presenter
View

reads/modifies

JTextField JCheckBox JButton

Document ButtonModel ButtonModel

:: JGOODIES :: :: JGOODIES :: Java User Interface DesignJava User Interface Design

PM: GUI State

Domain Data

Presentation Model

View

Textfield Checkbox Button

Text Model Check Model Button Model

:: JGOODIES :: :: JGOODIES :: Java User Interface DesignJava User Interface Design

PM in Swing: GUI State

Domain Data

Presentation Model

View

JTextField JCheckBox JButton

Text Model Check Model Action

Document ButtonModel ButtonModel

:: JGOODIES :: :: JGOODIES :: Java User Interface DesignJava User Interface Design

MVP vs. Presentation Model

 MVP holds the GUI state once.

 PM holds it twice, in the View and the PM.

 PM requires a synchronisation between
the PM state and the View state.

 No worries about this synchronisation!
The Swing architecture supports this well.

:: JGOODIES :: :: JGOODIES :: Java User Interface DesignJava User Interface Design

Reminder: Swing Actions

JButton

Action
•Text
•Icon
•Enablement
•Mnemonic

JMenuItemJButton

:: JGOODIES :: :: JGOODIES :: Java User Interface DesignJava User Interface Design

PM: Lists, Tables, Trees

Domain Data

Presentation Model

View

JTable JTree JButton

Table Model Tree Model Action

TableModel TreeModel ButtonModel

JList

ListModel

List Model

:: JGOODIES :: :: JGOODIES :: Java User Interface DesignJava User Interface Design

PM: Lists, Tables, Trees

Domain Data

Presentation Model

View

JTable JTree JButton

ActionTableModel TreeModel

Button
Model

JList

ListModel

:: JGOODIES :: :: JGOODIES :: Java User Interface DesignJava User Interface Design

Synchronization Example

private void initComponents() {

 okButton = new JButton(
 presentationModel.getOKAction());

 albumList = new JList(
 presentationModel.getAlbumListModel());

 ...
}

:: JGOODIES :: :: JGOODIES :: Java User Interface DesignJava User Interface Design

PM: Multiple Views I

Domain Data

Presentation Model

Panel with List and Button

JButton

Action

JList

ListModel

Popup Menu

JMenuItem

:: JGOODIES :: :: JGOODIES :: Java User Interface DesignJava User Interface Design

Table with Button

PM: Multiple Views II

Domain Data

Presentation Model

Display List

JTable

Action

JList

ListModel

JButton

TableModelAdapter

:: JGOODIES :: :: JGOODIES :: Java User Interface DesignJava User Interface Design

PM: List with Selektion

Domain Data

Presentation Model

View

ListSelectionModel

JList

ListModel

:: JGOODIES :: :: JGOODIES :: Java User Interface DesignJava User Interface Design

Three Things Missing

 How do we model non-data GUI state,
for example Enablement?

 How do we synchronize single values for
JTextField, JFormattedTextField, JLabel?

 How do we synchronize single values
between the domain layer and the PMs?

:: JGOODIES :: :: JGOODIES :: Java User Interface DesignJava User Interface Design

PM Example: Enablement

Domain Data

Presentation Model

View

Text Enablement

JTextField

Text Model

ChangeHandler

:: JGOODIES :: :: JGOODIES :: Java User Interface DesignJava User Interface Design

IV – Synchronizing Single Values

How to bind
domain data to UI components?

:: JGOODIES :: :: JGOODIES :: Java User Interface DesignJava User Interface Design

Binding Tasks

 Read and write domain object properties

 Get and set GUI model state

 Report and handle changes in the domain

 Buffer values – delay until OK pressed

 Change management – commit required?

 Indirection as in an Master-Detail view

 Convert types, e. g. Date to String

:: JGOODIES :: :: JGOODIES :: Java User Interface DesignJava User Interface Design

JCheckBox: Types of State

ToggleButtonModel

JCheckBox

enabled
text, ...

selected

 armed
 pressed, ...

GUI State

Data State

GUI Property

:: JGOODIES :: :: JGOODIES :: Java User Interface DesignJava User Interface Design

JCheckBox: Binding Task

aToggleButtonModel

aJCheckBox

selected=true Data Model

GUI Component

anAlbum
title=”Preludes”
classical=true

Domain Data

bind/connect,
synchronize

:: JGOODIES :: :: JGOODIES :: Java User Interface DesignJava User Interface Design

Copying: Pros and Cons

 Easy to understand, easy to explain

 Works in almost all situations

 Easy to debug – explicit data operations

 Blows up the view code

 It's difficult to synchronize views

 Handles domain changes poorly

:: JGOODIES :: :: JGOODIES :: Java User Interface DesignJava User Interface Design

Concept

 Use a universal model (ValueModel)

 Convert domain properties to ValueModel

 Build converters from ValueModel
to Swing models: ToggleButtonModel, etc.

:: JGOODIES :: :: JGOODIES :: Java User Interface DesignJava User Interface Design

ValueModel and Adapter

aToggleButtonAdapter

aJCheckBox

anAlbum
title=”Preludes”
classical=true

aValueModel

:: JGOODIES :: :: JGOODIES :: Java User Interface DesignJava User Interface Design

ValueModel: Requirements

 We want to get its value

 We want to set its value

 We want to observe changes

:: JGOODIES :: :: JGOODIES :: Java User Interface DesignJava User Interface Design

The ValueModel Interface

public interface ValueModel {

 Object getValue();

 void setValue(Object newValue);

 void addChangeListener(ChangeListener l);

 void removeChangeListener(ChangeListener l);
}

:: JGOODIES :: :: JGOODIES :: Java User Interface DesignJava User Interface Design

Which Event Type?

 ChangeEvent reports no new value;
must be read from the model – if necessary

 PropertyChangeEvent
provides the old and new value;
both can be null

:: JGOODIES :: :: JGOODIES :: Java User Interface DesignJava User Interface Design

ValueModel & PropertyAdapter

aToggleButtonAdapter

aJCheckBox

anAlbum
title=”Preludes”
classical=true

ToggleButtonModel

aPropertyAdapter
propertyName=”classical” ValueModel

implements

implements

:: JGOODIES :: :: JGOODIES :: Java User Interface DesignJava User Interface Design

Domain Object Requirements

 We want to get and set values

 We want to do so in a uniform way

 Changes shall be observable

 That's what Java Beans provide.

:: JGOODIES :: :: JGOODIES :: Java User Interface DesignJava User Interface Design

(Bound) Bean Properties

 Java Beans have properties,
that we can get and set in a uniform way.

 Bean properties are bound,
if we can observe property changes
by means of PropertyChangeListeners.

:: JGOODIES :: :: JGOODIES :: Java User Interface DesignJava User Interface Design

PropertyAdapter

 BeanAdapter and PropertyAdapter
convert Bean properties to ValueModel

 Observe bound properties

 Use Bean Introspection that in turn uses
Reflection to get and set bean properties

:: JGOODIES :: :: JGOODIES :: Java User Interface DesignJava User Interface Design

ValueModel & PropertyAdapter

aToggleButtonAdapter

aJCheckBox

anAlbum (Bean)
title=”Preludes”
classical=true

aPropertyAdapter
propertyName=”classical” ValueModel

implements

get/set

:: JGOODIES :: :: JGOODIES :: Java User Interface DesignJava User Interface Design

Build a Chain of Adapters

private void initComponents() {

 Album album = getEditedAlbum();

 ValueModel aValueModel =
 new PropertyAdapter(album, “classical”);

 JCheckBox classicalBox = new JCheckBox();
 classicalBox.setModel(
 new ToggleButtonAdapter(aValueModel));
}

:: JGOODIES :: :: JGOODIES :: Java User Interface DesignJava User Interface Design

ComponentFactory

private void initComponents() {

 Album album = getEditedAlbum();

 JCheckBox classicalBox =
 ComponentFactory.createCheckBox(
 album,
 Album.PROPERTYNAME_CLASSICAL);
}

:: JGOODIES :: :: JGOODIES :: Java User Interface DesignJava User Interface Design

Adapter vs. Connector

aDocumentAdapter

aJTextField

anAlbum
title=”Preludes”

releaseDate=Dec-5-1967

aPropertyAdapter
for Album#title

aPropertyConnector

aJFormattedTextField

aPropertyAdapter
for Album#releaseDate

:: JGOODIES :: :: JGOODIES :: Java User Interface DesignJava User Interface Design

Indirection

aToggleButtonAdapter

aJCheckBox

anAlbum
title=”Preludes”
classical=true

aPropertyAdapter
propertyName=”classical”

aBeanChannel

aDocumentAdapter

aJTextField

aPropertyAdapter
propertyName=”title”

anAlbum
title=”Etudes”
classical=true

Holds the
edited album

:: JGOODIES :: :: JGOODIES :: Java User Interface DesignJava User Interface Design

Indirection

aToggleButtonAdapter

aJCheckBox

anAlbum
title=”Preludes”
classical=true

aPropertyAdapter
propertyName=”classical”

aBeanChannel

aDocumentAdapter

aJTextField

aPropertyAdapter
propertyName=”title”

anAlbum
title=”Etudes”
classical=true

Holds the
edited album

:: JGOODIES :: :: JGOODIES :: Java User Interface DesignJava User Interface Design

Example View Source Code

1) Variables for UI components

2) Constructors

3) Create, bind, configure UI components

4) Register GUI state handlers with the model

5) Build and return panel

6) Handlers that update GUI state

:: JGOODIES :: :: JGOODIES :: Java User Interface DesignJava User Interface Design

Example View 1/7

public final class AlbumView {

 // Refers to the model provider
 private AlbumPresentationModel model;

 // UI components
 private JTextField titleField;
 private JCheckBox classicalBox;
 private JButton buyNowButton;
 private JList referencesList;
 ...

:: JGOODIES :: :: JGOODIES :: Java User Interface DesignJava User Interface Design

Example View 2/7

public AlbumView(AlbumPresentationModel m) {

 // Store a ref to the presentation model
 this.model = m;

 // Do some custom setup.
 ...
}

:: JGOODIES :: :: JGOODIES :: Java User Interface DesignJava User Interface Design

Example View 3/7

private void initComponents() {
 titleField = ComponentFactory.createField(
 model.getTitleModel());
 titleField.setEditable(false);

 buyNowButton = new JButton(
 model.getBuyNowAction());

 referenceList = new JList(
 model.getReferenceListModel());
 referenceList.setSelectionModel(
 model.getReferenceSelectionModel());
 ...

:: JGOODIES :: :: JGOODIES :: Java User Interface DesignJava User Interface Design

Example View 4/7

private initEventHandling(){
 // Observe the model to update GUI state
 model.addPropertyChangeListener(
 “composerEnabled”,
 new ComposerEnablementHandler());
}

:: JGOODIES :: :: JGOODIES :: Java User Interface DesignJava User Interface Design

Example View 5/7

public JPanel buildPanel() {
 // Create, bind and configure components
 initComponents();

 // Register handlers that change UI state
 initEventHandling();

 FormLayout layout = new FormLayout(
 “right:pref, 3dlu, pref”, // 3 columns
 “p, 3dlu, p”); // 3 rows

 ...

:: JGOODIES :: :: JGOODIES :: Java User Interface DesignJava User Interface Design

Example View 6/7

 PanelBuilder builder =
 new PanelBuilder(layout);
 CellConstraints cc = new CellConstraints();

 builder.addLabel(“Title”, cc.xy(1, 1));
 builder.add(titleField, cc.xy(3, 1));
 builder.add(availableBox, cc.xy(3, 3));
 builder.add(buyNowButton, cc.xy(3, 5));
 builder.add(referenceList, cc.xy(3, 7));

 return builder.getPanel();
}

:: JGOODIES :: :: JGOODIES :: Java User Interface DesignJava User Interface Design

Example View 7/7

/* Listens to #composerEnabled, changes #enabled of the composerField. */
private class ComposerEnablementHandler
 implements PropertyChangeListener {

 public void propertyChange(
 PropertyChangeEvent evt) {

 composerField.setEnabled(
 model.isComposerEnabled());
 }
}

:: JGOODIES :: :: JGOODIES :: Java User Interface DesignJava User Interface Design

Simpler Event Handling

private initEventHandling(){
 // Synchronize model with GUI state
 PropertyConnector.connect(
 model, “composerEnabled”,
 composerField, “enabled”);
}

:: JGOODIES :: :: JGOODIES :: Java User Interface DesignJava User Interface Design

V - Field Report

How does PM and Adapter Binding work?

:: JGOODIES :: :: JGOODIES :: Java User Interface DesignJava User Interface Design

Design Goals

 Works with standard Swing components

 Works with custom Swing components

 Requires no special components

 Requires no special panels

 Integrates well with validation

 Works with different validation styles

:: JGOODIES :: :: JGOODIES :: Java User Interface DesignJava User Interface Design

Costs

 Adapter Binding:
– increases learning costs

– decreases production costs a little

– can significantly reduce change costs

:: JGOODIES :: :: JGOODIES :: Java User Interface DesignJava User Interface Design

Use a ComponentFactory!

 Encapsulate the creation of adapters from
ValueModel to Swing components.

 Some components have no appropriate
model, e. g. JFormattedTextField

 Vends components for ValueModels

:: JGOODIES :: :: JGOODIES :: Java User Interface DesignJava User Interface Design

Tip

 Observer/Observable works well between
different layers.

 Use Observer judiscously in a layer.

:: JGOODIES :: :: JGOODIES :: Java User Interface DesignJava User Interface Design

Warnings

 Using Observer in the domain layer makes it
more difficult to understand what's going on
if a domain property changes.

 Be aware of memory leaks, if you observe
domain data with listeners that are
registered permanently. In this case,
the domain data references the GUI.

:: JGOODIES :: :: JGOODIES :: Java User Interface DesignJava User Interface Design

Performance

 Adapter chains fire many change events

 That seems to be no performance problem

 ListModel can improve the performance
compared to copying list contents

:: JGOODIES :: :: JGOODIES :: Java User Interface DesignJava User Interface Design

Debugging

 Copying approach is easy to debug;
you can see when where what happens.

 Adapter chains “move“ values implicitly;
it's harder to understand updates.

 Reflection and Introspection hide
who reads and writes values.

 Favor named over anonymous listeners.

:: JGOODIES :: :: JGOODIES :: Java User Interface DesignJava User Interface Design

Renaming Methods

 Reflection and Introspection make it
more difficult to rename bean properties
and their getter and setters.

 Use constants for bean property names!

 Obfuscators fail to detect the call graph.

:: JGOODIES :: :: JGOODIES :: Java User Interface DesignJava User Interface Design

When is Binding Useful?

 I guess that adapter binding can be applied
to about 80% of all Swing projects.

 However, you need at least one expert
who masters the binding classes.

:: JGOODIES :: :: JGOODIES :: Java User Interface DesignJava User Interface Design

Why MVP has been Created

 MVP has been created, because many
Smalltalk developers have implemented
Presentation Models that referred directly
to the (single) view.

 Swing and Binding help avoid this problem.

:: JGOODIES :: :: JGOODIES :: Java User Interface DesignJava User Interface Design

State of the JGoodies Binding?

 Approach is 10 years old and stable.

 Architecture of the Java port is stable.

 Tests cover 90% of the classes.

 Little documentation.

 Tutorial is quite small.

:: JGOODIES :: :: JGOODIES :: Java User Interface DesignJava User Interface Design

End

Summary and References

:: JGOODIES :: :: JGOODIES :: Java User Interface DesignJava User Interface Design

Summary

 Separate the domain from the presentation!
That is Separated Presentation.

 Separate Autonomous View if appropriate

 Choose MVP or Presentation Model

 Swing makes Presentation Model easy

 PM requires a binding solution

:: JGOODIES :: :: JGOODIES :: Java User Interface DesignJava User Interface Design

JGoodies Swing Suite

JRE / Swing

Convenience Source Code

Runtime env.

Building blocks

App. framework

Helper code

Validation

Applications

BindingForms

Example 1

Looks

User Interface Framework (UIF)

Example 2 Example n

:: JGOODIES :: :: JGOODIES :: Java User Interface DesignJava User Interface Design

References I

 Fowlers Enterprise Patterns
martinfowler.com/eaaDev/

 JGoodies Binding
binding.dev.java.net

 JGoodies Articles
www.JGoodies.com/articles/

 JGoodies Demos
www.JGoodies.com/freeware/

:: JGOODIES :: :: JGOODIES :: Java User Interface DesignJava User Interface Design

References II

 Suns JDNC
jdnc.dev.java.net

 Oracles JClient and ADF
otn.oracle.com/, search 'JClient'

 Spring Rich Client Project
www.springframework.org/spring-rcp.html

:: JGOODIES :: :: JGOODIES :: Java User Interface DesignJava User Interface Design

References III

 VisualWorks Application Architecture
tinyurl.com/yulru

 Understanding and Using ValueModels
c2.com/ppr/vmodels.html

 Model-View-Presenter (MVP)
tinyurl.com/33snk

 HMVC / Scope
tinyurl.com/39q9u, scope.sourceforge.net/

:: JGOODIES :: :: JGOODIES :: Java User Interface DesignJava User Interface Design

Tiny Examples/Tutorial:

JGoodies Binding Tutorial
Data binding problems and solutions

Ships with the JGoodies Binding

:: JGOODIES :: :: JGOODIES :: Java User Interface DesignJava User Interface Design

Questions & Answers

:: JGOODIES :: :: JGOODIES :: Java User Interface DesignJava User Interface Design

End

Hope that helps!

Good luck!

Karsten Lentzsch

