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Presentation Goals

Learn how to organize presentation logic

and how to bind domain data to a Swing UI
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Speaker Qualifications

 Karsten builds elegant Swing apps

 works with Objects since 1990

 helps others with UI and architectures

 provides libraries that complement Swing

 provides examples for Swing architectures

 writes about Java desktop issues
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Agenda

 Introduction

 Separated Presentation & Autonomous View

 MVP, MVC and Presentation Model

 Synchronizing Single Values

 Field Report
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Swing Building Blocks

JRE / Swing

Panels

Foundation

Basic Libraries

Application Frame

Helper Code/Libs

Validation

Applications

BindingLayout

Application 1

Appearance

Components, Application Management, etc. 

Utils Help Printing

Application 2
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Questions

 How and where is MVC used in Swing?

 How to structure my application?

 How to separate models?

 How to build a view?

 Who should handle events?

 Do I need a controller?
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Strongly Recommended!

1. Use Separated Presentation!

2. Read “Organizing Presentation Logic”    
in Fowler's “Further P of EAA”

3. Study MVP and Presentation Model

4. Know Observer

5. If appropriate split Autonomous View 
using  MVP or Presentation Model
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I - Basics

Separated Presentation & Autonomous View



:: JGOODIES :: :: JGOODIES :: Java User Interface DesignJava User Interface Design

Not this way!

Domain Data

Presentation Logic

Presentation (Views)

Without Separated Presentation
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Separate Domain from Views

 Domain logic contains no GUI code

 Presentation handles all UI issues

 Advantages:
– Each part is easier to understand

– Each part is easier to change

 Rule of thumb for domain data:                 
Do I need this class even without a GUI?
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Separated Presentation

Domain Data

Presentation Logic

Presentation (Views)

Presentation Layer

Domain Layer
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Loose Coupling

 The domain shall not reference the GUI

 Presentation refers to domain and can 
modify it

 Advantages:
– Reduces complexity

– Allows to build multiple presentations                 
of a single domain object
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Sep.Presentation with Observer

Domain Data

Presentation Logic

Presentation (Views)

notifies refers to/modifies



:: JGOODIES :: :: JGOODIES :: Java User Interface DesignJava User Interface Design

Autonomous View

Presentation Logic

Presentation (Views)
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Autonomous View

 Often: one Java class per window/frame.

 Typically a subclass of JDialog, JFrame, 
JPanel – which isn't really necessary.

 Appropriate pattern for smaller views.

 If the views and logic get more complex, 
it's worth to separate concerns. 
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Autononous View: Details

JDialog

Presentation Logic

Component Configuration

Panel Building Code
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Tips

 Build dialogs, frames, panel;               
extend them only if necessary.

 Compose larger screens from small panels.
–  in simple cases use build methods like 

#buildMainPanel,#buildButtonBar, etc.

– otherwise use panels and nest subpanels.

 Consider separating the presentation logic 
from the presentation.
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When to Split Autonomous View?

 If you want to test the presentation logic.

 If you don't overview the source anymore, 
for example because it exceeds your outline.

 If you share code with colleagues.

 If you want to reuse the logic or views.
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Presentation Logic Separated

Domain Data

Presentation LogicPresentation (Views)
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Advantages of the Separation I

 Makes testing easier (Fowler).

 GUI layer becomes quite simple, and is easy 
to build, to understand, and to maintain.

 More team members can work on the GUI.

 GUI code can follow syntactical patterns.

 Makes it easier to work with visual builders.
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Advantages of the Separation II

 The complex logic is easier to overview.

 The separation helps us structure our work.

 Simplifies team synchronisation.

 Allows to build “forbidden zones”
– for team members

– before you ship a new release
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Disadvantages of the Separation

 More work.

 Requires to work with a set of related classes 
instead of a single class.

Typically you benefit from the separation.
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II – Splitting Autonomous View

MVP, MVC and Presentation Model
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Model-View-Presenter (MVP)

Model
(Domain data)

Presenter
(Presentation logic)

View
(Painting code)

reads/modifies

refers to
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MVP

 The View
– holds the GUI state,  for example                        

a JTextField with Text and Enablement

 The Presenter 
– reads domain data and copies them to the 

components of the views

– handles GUI events and modifies                          
the GUI state in the view

– modifies domain data using GUI data
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MVP

Domain Data

Presenter

• reads domain data
• sets GUI state
• handles events
• changes the domain

View

reads/modifies

Textfield

Checkbox

Button

Window

builds
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MVP vs. MVC

Differences and the Swing-MVC-Variant
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MVC

Model

ControllerView

modifiesnotifies

refers to
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MVC

Model

ControllerView

modifiesnotifies

refers to
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MVC with Model Layer

Domain Model

ControllerView Presentation Layer

Domain Layer

GUI Model Model Layer
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Factoring out the Look&Feel

Swing can change the application's  
appearance and behavior (look & feel).

 Views and Controller are separated from   
the UI components and are put together        
as a UI Delegate.
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M-JComponent-VC

Controller

View

Swing Model(s)

JComponent 
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MetalCheckBoxUI

Example: JCheckBox

Event
Handling

Painting

ToggleButtonModel

JCheckBox
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MetalCheckBoxUI

JCheckBox: Some Details

Event
Handling

Painting

ToggleButtonModel

JCheckBox

Basic-
ButtonUI

MouseListener

MouseMotionListener

ChangeListener

PropertyChangeListener

FocusListener

Change-
Listener
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Summary

 Swing doesn't use the original MVC

 Swing uses an extended form of MVC

 Swing shares the motivation behind MVC

 Swing adds features to the original MVC

 UI delegates are both view and controller

 MVC is for components,                           
MVP for applications
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MVP in Swing

Domain Data

Presenter

Present. logic:
on checkbox 
selection
•change text
•disable Button

View

JCheckBox

MetalCheckBoxUI

Event
Handling

Painting
JTextField

JButton
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Presentation Model (PM)

Model
(Domain Data)

Presentation Model
(GUI State + Presentation Logic)

View
(Painting Code)

reads/modifies

refers to
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Presentation Model (PM)

Model
(Domain Data)

Presentation Model
(GUI State + Presentation Logic)

View
(Painting Code)

reads/modifies

refers to
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Presentation Model

 The View 
– consists only of GUI components

– observes changes in the Presentation Model

 The Presentation Model
– contains GUI state and presentation logic

– reads domain to update its GUI state

– handles GUI events by changing                          
its GUI state; then reports changes

– modifies domain data using its GUI state
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Presentation Model

Domain Data

Presentation Model 

View

Textfield CheckBox Button

Window

builds

Text Model Check Model Button Model
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MVP vs. Presentation Model

 Presenter refers to the View, PM does not 
refer (directly) to the View.

 In MVP the View holds the GUI state.

 The PM holds the GUI state itself.

 The Presenter changes GUI state in the View

 The PM changes its own GUI state and 
reports changes to all its View.
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MVP

Model
(Domain Data)

Presenter
(Presentation Logic)

View
(Painting Code)

reads/modifies

refers to
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Presentation Model

Model
(Domain Data)

Presentation Model
(GUI state + Presentation Logic)

View
(Painting Code)

reads/modifies

refers to
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MVP in Swing: GUI State

Domain Data

Presenter
View

reads/modifies

JTextField JCheckBox JButton

Document ButtonModel ButtonModel
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PM: GUI State

Domain Data

Presentation Model 

View

Textfield Checkbox Button

Text Model Check Model Button Model
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PM in Swing: GUI State

Domain Data

Presentation Model 

View

JTextField JCheckBox JButton

Text Model Check Model Action

Document ButtonModel ButtonModel
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MVP vs. Presentation Model

 MVP holds the GUI state once.

 PM holds it twice, in the View and the PM.

 PM requires a synchronisation between     
the PM state and the View state.

 No worries about this synchronisation!           
The Swing architecture supports this well.
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Reminder: Swing Actions

JButton

Action
•Text
•Icon
•Enablement
•Mnemonic

JMenuItemJButton
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PM: Lists, Tables, Trees

Domain Data

Presentation Model 

View

JTable JTree JButton

Table Model Tree Model Action

TableModel TreeModel ButtonModel

JList

ListModel

List Model
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PM: Lists, Tables, Trees

Domain Data

Presentation Model 

View

JTable JTree JButton

ActionTableModel TreeModel

Button
Model

JList

ListModel
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Synchronization Example

private void initComponents() {

   okButton = new JButton(
       presentationModel.getOKAction());

   albumList = new JList(
       presentationModel.getAlbumListModel());

    ...
}
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PM: Multiple Views I

Domain Data

Presentation Model 

Panel with List and Button

JButton

Action

JList

ListModel

Popup Menu

JMenuItem
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Table with Button

PM: Multiple Views II

Domain Data

Presentation Model 

Display List

JTable

Action

JList

ListModel

JButton

TableModelAdapter
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PM: List with Selektion

Domain Data

Presentation Model 

View

ListSelectionModel

JList

ListModel
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Three Things Missing

 How do we model non-data GUI state,       
for example Enablement?

 How do we synchronize single values for 
JTextField, JFormattedTextField, JLabel?

 How do we synchronize single values 
between the domain layer and the PMs?
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PM Example: Enablement

Domain Data

Presentation Model 

View

Text Enablement

JTextField

Text Model

ChangeHandler
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IV – Synchronizing Single Values

How to bind
domain data to UI components?
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Binding Tasks

 Read and write domain object properties

 Get and set GUI model state

 Report and handle changes in the domain

 Buffer values – delay until OK pressed

 Change management – commit required?

 Indirection as in an Master-Detail view

 Convert types, e. g. Date to String
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JCheckBox: Types of State

ToggleButtonModel

JCheckBox

enabled
text, ...

selected

   armed
   pressed, ...

GUI State

Data State

GUI Property
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JCheckBox: Binding Task

aToggleButtonModel

aJCheckBox

selected=true Data Model

GUI Component

anAlbum
title=”Preludes”
classical=true

Domain Data

bind/connect, 
synchronize
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Copying: Pros and Cons

 Easy to understand, easy to explain

 Works in almost all situations

 Easy to debug – explicit data operations

 Blows up the view code

 It's difficult to synchronize views

 Handles domain changes poorly 
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Concept

 Use a universal model (ValueModel)

 Convert domain properties to ValueModel

 Build converters from ValueModel            
to Swing models: ToggleButtonModel, etc.
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ValueModel and Adapter

aToggleButtonAdapter

aJCheckBox

anAlbum
title=”Preludes”
classical=true

aValueModel
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ValueModel: Requirements

 We want to get its value

 We want to set its value

 We want to observe changes
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The ValueModel Interface

public interface ValueModel {

  Object getValue();
    
  void setValue(Object newValue);

  void addChangeListener(ChangeListener l);

  void removeChangeListener(ChangeListener l);
}
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Which Event Type?

 ChangeEvent reports no new value;             
must be read from the model – if necessary

 PropertyChangeEvent                          
provides the old and new value;               
both can be null
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ValueModel & PropertyAdapter

aToggleButtonAdapter

aJCheckBox

anAlbum
title=”Preludes”
classical=true

ToggleButtonModel

aPropertyAdapter
propertyName=”classical” ValueModel

implements

implements
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Domain Object Requirements

 We want to get and set values

 We want to do so in a uniform way

 Changes shall be observable

             That's what Java Beans provide.
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(Bound) Bean Properties

 Java Beans have properties,                       
that we can get and set in a uniform way.

 

 Bean properties are bound,                            
if we can observe property changes            
by means of PropertyChangeListeners.
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PropertyAdapter

 BeanAdapter  and PropertyAdapter         
convert Bean properties to ValueModel

 Observe bound properties

 Use Bean Introspection that in turn uses 
Reflection to get and set bean properties
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ValueModel & PropertyAdapter

aToggleButtonAdapter

aJCheckBox

anAlbum (Bean)
title=”Preludes”
classical=true

aPropertyAdapter
propertyName=”classical” ValueModel

implements

get/set
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Build a Chain of Adapters

private void initComponents() {

  Album album = getEditedAlbum();
    
  ValueModel aValueModel = 
      new PropertyAdapter(album, “classical”);

  JCheckBox classicalBox = new JCheckBox();
  classicalBox.setModel(
      new ToggleButtonAdapter(aValueModel));
}
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ComponentFactory

private void initComponents() {

  Album album = getEditedAlbum();
    
  JCheckBox classicalBox =
      ComponentFactory.createCheckBox(
          album,
          Album.PROPERTYNAME_CLASSICAL);
}
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Adapter vs. Connector

aDocumentAdapter

aJTextField

anAlbum
title=”Preludes”

releaseDate=Dec-5-1967

aPropertyAdapter
for Album#title

aPropertyConnector

aJFormattedTextField

aPropertyAdapter
for Album#releaseDate
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Indirection

aToggleButtonAdapter

aJCheckBox

anAlbum
title=”Preludes”
classical=true

aPropertyAdapter
propertyName=”classical”

aBeanChannel

aDocumentAdapter

aJTextField

aPropertyAdapter
propertyName=”title”

anAlbum
title=”Etudes”
classical=true

Holds the 
edited album
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Indirection

aToggleButtonAdapter

aJCheckBox

anAlbum
title=”Preludes”
classical=true

aPropertyAdapter
propertyName=”classical”

aBeanChannel

aDocumentAdapter

aJTextField

aPropertyAdapter
propertyName=”title”

anAlbum
title=”Etudes”
classical=true

Holds the 
edited album
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Example View Source Code

1) Variables for UI components

2) Constructors

3) Create, bind, configure UI components

4) Register GUI state handlers with the model 

5) Build and return panel

6) Handlers that update GUI state



:: JGOODIES :: :: JGOODIES :: Java User Interface DesignJava User Interface Design

Example View 1/7

public final class AlbumView {

    // Refers to the model provider
    private AlbumPresentationModel model;
    
    // UI components
    private JTextField titleField;
    private JCheckBox  classicalBox;
    private JButton    buyNowButton;
    private JList      referencesList;
    ...



:: JGOODIES :: :: JGOODIES :: Java User Interface DesignJava User Interface Design

Example View 2/7

public AlbumView(AlbumPresentationModel m) {

    // Store a ref to the presentation model
    this.model = m;

    // Do some custom setup.
    ...
}
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Example View 3/7

private void initComponents() {
   titleField = ComponentFactory.createField(
       model.getTitleModel());
   titleField.setEditable(false);
   
   buyNowButton = new JButton(
       model.getBuyNowAction());
   
   referenceList = new JList(
       model.getReferenceListModel());
   referenceList.setSelectionModel(
       model.getReferenceSelectionModel());
  ...



:: JGOODIES :: :: JGOODIES :: Java User Interface DesignJava User Interface Design

Example View 4/7

private initEventHandling(){
    // Observe the model to update GUI state
    model.addPropertyChangeListener(
       “composerEnabled”,
       new ComposerEnablementHandler());
}
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Example View 5/7

public JPanel buildPanel() {
    // Create, bind and configure components
    initComponents();

    // Register handlers that change UI state
    initEventHandling();

    FormLayout layout = new FormLayout(
        “right:pref, 3dlu, pref”, // 3 columns
        “p, 3dlu, p”);            // 3 rows

    ...
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Example View 6/7

   PanelBuilder builder =
       new PanelBuilder(layout);
   CellConstraints cc = new CellConstraints(); 
   

   builder.addLabel(“Title”,  cc.xy(1, 1));
   builder.add(titleField,    cc.xy(3, 1));
   builder.add(availableBox,  cc.xy(3, 3));
   builder.add(buyNowButton,  cc.xy(3, 5));
   builder.add(referenceList, cc.xy(3, 7));

   return builder.getPanel();
}
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Example View 7/7

/* Listens to #composerEnabled,                changes #enabled of the composerField.  */
private class ComposerEnablementHandler 
    implements PropertyChangeListener {

    public void propertyChange(
        PropertyChangeEvent evt) {

        composerField.setEnabled(
            model.isComposerEnabled());
    }
}
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Simpler Event Handling

private initEventHandling(){
    // Synchronize model with GUI state
    PropertyConnector.connect(
       model,         “composerEnabled”,
       composerField, “enabled”);
}
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V - Field Report

How does PM and Adapter Binding work?
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Design Goals

 Works with standard Swing components

 Works with custom Swing components

 Requires no special components

 Requires no special panels

 Integrates well with validation 

 Works with different validation styles
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Costs

 Adapter Binding:
– increases learning costs

– decreases production costs a little

– can significantly reduce change costs
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Use a ComponentFactory!

 Encapsulate the creation of adapters from 
ValueModel to Swing components.

 Some components have no appropriate 
model, e. g.  JFormattedTextField

 Vends components for ValueModels 
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Tip

 Observer/Observable works well between 
different layers.

 Use Observer judiscously in a layer.
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Warnings

 Using Observer in the domain layer makes it 
more difficult to understand what's going on 
if a domain property changes.

 Be aware of memory leaks, if you observe 
domain data with listeners that are 
registered permanently. In this case,           
the domain data references the GUI.
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Performance

 Adapter chains fire many change events

 That seems to be no performance problem

 ListModel can improve the performance 
compared to copying list contents
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Debugging

 Copying approach is easy to debug;         
you can see when where what happens.

 Adapter chains “move“ values implicitly;   
it's harder to understand updates. 

 Reflection and Introspection hide        
who reads and writes values.

 Favor named over anonymous listeners.
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Renaming Methods

 Reflection and Introspection make it    
more difficult to rename bean properties 
and their getter and setters.

 Use constants for bean property names!

 Obfuscators fail to detect the call graph.



:: JGOODIES :: :: JGOODIES :: Java User Interface DesignJava User Interface Design

When is Binding Useful?

 I guess that adapter binding can be applied 
to about 80% of all Swing projects.

 However, you need at least one expert   
who masters the binding classes.
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Why MVP has been Created

 MVP has been created, because many 
Smalltalk developers have implemented 
Presentation Models that referred directly  
to the (single) view.

 Swing and Binding help avoid this problem.
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State of the JGoodies Binding?

 Approach is 10 years old and stable.

 Architecture of the Java port is stable.

 Tests cover 90% of the classes.

 Little documentation.

 Tutorial is quite small.
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End

Summary and References
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Summary

 Separate the domain from the presentation!  
That is Separated Presentation.

 Separate Autonomous View if appropriate

 Choose MVP or Presentation Model

 Swing makes Presentation Model easy

 PM requires a binding solution
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JGoodies Swing Suite

JRE / Swing

Convenience Source Code

Runtime env.

Building blocks

App. framework

Helper code

Validation

Applications

BindingForms

Example 1

Looks

User Interface Framework (UIF)

Example 2 Example n
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martinfowler.com/eaaDev/
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binding.dev.java.net
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 Oracles JClient and ADF       
otn.oracle.com/, search 'JClient'

 Spring Rich Client Project 
www.springframework.org/spring-rcp.html
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References III

 VisualWorks Application Architecture          
tinyurl.com/yulru

 Understanding and Using ValueModels     
c2.com/ppr/vmodels.html

 Model-View-Presenter (MVP)                         
tinyurl.com/33snk

 HMVC / Scope                               
tinyurl.com/39q9u, scope.sourceforge.net/
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Tiny Examples/Tutorial:

JGoodies Binding Tutorial
Data binding problems and solutions

Ships with the JGoodies Binding
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Questions & Answers
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End

Hope that helps!

Good luck!

Karsten Lentzsch


