
JSR 296 – SWING APP FRAMEWORK

JGoodies Karsten Lentzsch

JGoodies

▪ Elegant Swing applications

▪ Swing libraries

▪ Example application sources

▪ Design assistance

▪ General Swing consulting

▪ Expert group member for the JSR 296/295

▪ Offer alternative 296 implementations

Learn why & how it started, what it is,

how to use it, whether you can use it.

Goal

It's easy to program Swing ...

It's easy to program Swing badly.

What's the problem?

▪ Swing API is big / High learning curve

▪ No guidance beyond the toolkit level

▪ No standard for desktop apps

▪ Hard to find desktop patterns

▪ Difficult for beginners and even experts

Laboratory results ->

The Solution

▪ Reusable, extensible framework for issues
common to typical Swing apps

▪ Public prototype at java.net

▪ Developed through a JSR

▪ [Was] intended for Java 7

A Scary Monster?

Monsters

▪ Eclipse RCP

▪ Netbeans RCP

▪ Spring RCP / [Spring Desktop]

296: Not Scary

▪ As small as possible

▪ Much smaller than Eclipse or Netbeans RCP

▪ About 20 classes

▪ Can be explained in less than an hour

▪ Targets small to medium apps

▪ No modules, docking, scripting, GUI markup,
generic data model, event bus

Draft

▪ The JSR has not reached the early-draft state.

▪ Classes, types, methods are work in progress

▪ Slides focus on features, not implementation

Agenda

Lifecycle

Resources

Actions

Tasks

Misc

State of the JSR

Application Lifecycle I

Launch

Startup

Ready

Calls startup() and ready() in the EDT.
Usually invoked from main().

Creates, configures, and shows the GUI.
Mandatory.

Work that must wait until the GUI is visible
and ready for input.

Application Launch

public final class Starter {

public static void main(String[] args) {

Application.launch(MyApp.class, args);

}

}

Application Start

public class MyApp extends Application {

protected void startup(String[] args) {

// Create, configure, and show the GUI

}

protected void ready() {

// Load images, fetch data, etc.

}

}

Application Lifecycle II

Exit

Shutdown

Calls shutdown(), if the ExitListeners don't
veto. Notifies ExitListeners about the exit.

Takes the GUI down. Final cleanup.

Application Exit

public void windowClosing(WindowEvent e) {

Application.getInstance().exit(e);

}

public interface ExitListener {

// Is the application allowed to exit?

Promise<Boolean>

applicationExiting(EventObject e);

// Do sth. before the app is shut down

void applicationExited();

}

Agenda

Lifecycle

Resources

Actions

Tasks

Misc

State of the JSR

ResourceMap

▪ Defined with ResourceBundles

▪ Organized in resources subpackages

▪ Used to set properties specific to:

 locale, platform, look&feel, customer

▪ "Rich" ResourceBundle

 Converts strings to types

 Expands variables

 Adds hierarchy (chain of parents)

Properties Example

search.enabled=true

background.color=#A0A0A0

open.icon=open.png

open.icon=/myapp/resources/open.png

properties.title=%s Properties

editCustomer.title=${edit.title}

Using ResourceMap

public class MyForm1 {

static final ResourceMap RESOURCES =

Application.getInstance().

getResourceMap(MyForm1.class);

...

RESOURCES.getColor("background.color");

RESOURCES.getIcon("open.icon");

RESOURCES.getString("properties.title",

objectName);

ResourceMap Chain

DefaultApp
Resources

MyApp
Resources

MyForm1
Resources

MyForm2
Resources

MyView
Resources

MySubView
Resources

Agenda

Lifecycle

Resources

Actions

Tasks

Misc

State of the JSR

Swing Actions

▪ ActionListener plus visual properties:

 text, shortcut, mnemonic, tooltip, help text

 enabled state

Old Style Action Definition

Action action = new AbstractAction("New…"){

public void actionPerformed(ActionEvt e){

// perform the new operation here

}

};

aTextField.setAction(action);

aButton.setAction(action);

Old Style Action Definition

public class MyModel {

private Action newAction;

public Action getNewAction() {

if (newAction == null) {

newAction = new AbstractAction("New…") {

public void actionPerformed(ActionEvent e){

// perform the new operation here

}

};

newAction.putValue(Action.MNEMONIC, …);

newAction.putValue(Action.SHORTCUT, …);

}

return newAction;

}

}

Old Style Action Definition

public class MyModel {

private Action newAction;

public Action getNewAction() {

if (newAction == null) {

newAction = new AbstractAction("New…") {

public void actionPerformed(ActionEvent e){

// perform the new operation here

}

};

newAction.putValue(Action.MNEMONIC, …);

newAction.putValue(Action.SHORTCUT, …);

}

return newAction;

}

}

Swing Actions

▪ Creating Action objects is inefficient

▪ Text, mnemonic, shortcut, etc.
should be internationalized
and may vary with the platform

▪ Asynchronous Actions are difficult

▪ Many inner Action classes

▪ Dispatching Action classes (one class for
many Actions) help a bit

New Action Definition

public class MyModel {

@Action

public void onNewPerformed(ActionEvent evt) {

// perform the new operation here

}

@Action(enabled=false)

public void onEditPerformed(ActionEvent evt) {

// perform the edit operation here

}

Action Properties

newItem.Action.text=&New…

newItem.Action.accelerator=Ctrl N

newItem.Action.shortDescription=New item

newItem.Action.icon=images/new.png

@Action with direct resources

public class MyModel {

@Action(text="_New…", accelerator="CTRL N")

public void onNewPerformed(ActionEvent evt) {

// perform the new operation here

}

…

}

Using Actions (1/2)

public class MyView {

private MyModel model;

...

ActionMap map =

Application.createActionMap(model);

Action action = map.get("newItem");

JButton button = new JButton(action);

Using Actions (2/2)

▪ JGoodies convenience types:

 IActionObject mit #getAction(String actionName)

▪ Implemented by:

 ActionObject

 ActionBean

 ActionPresentationModel

Agenda

Lifecycle

Resources

Actions

Tasks

Misc

State of the JSR

Don't Block the EDT!

▪ Use background threads for:
 operations that might block, e.g. file or network IO
 computationally intensive operations

▪ Approaches
 SwingWorker
 Spin
 Foxtrot

▪ We also want:
 progress and messages
 convenient definition
 dependencies between background tasks

Task and BlockingScope

▪ Task inherits the SwingWorker features

▪ Adds progress convenience ops

▪ Messages

▪ Configured from ResourceMap

▪ Safe exit behavior

▪ Blocks: nothing, Action, component, window,
application

Task Definition

public class SaveTask extends Task {

public SaveTask() {

super(BlockingScope.APPLICATION,

SaveTask.class);

}

protected Object doInBackground() {

setMessage("A message");

setProgress(30);

}

protected void succeeded() { … }

Using Tasks 1/2

public class MyModel {

@Action // External resources

public Task save(ActionEvent e) {

if (!valid()) {

// Show notifier immediately

return null;

}

return new SaveTask();

}

Using Tasks 2/2

public class MyModel {

@Action(text="_Save", enabled=false)

public Task save(ActionEvent e) {

if (!valid()) {

// Show notifier immediately

return null;

}

return new SaveTask();

}

TaskService, TaskMonitor

▪ TaskService defines how a Task is executed

 serially

 by a thread pool

 etc.

▪ TaskMonitor

 provides a summary for multiple Tasks

 bound properties for a foreground Task

 simplifies status bar implementations

Agenda

Lifecycle

Resources

Actions

Tasks

Misc

State of the JSR

Resource Injection

Set properties from like-named resources

resrcMap.injectComponents(aComponent)

myPanel.setBackground(Color c)

myLabel.setIcon(Icon i)

Set marked fields from like-named resources

resrcMap.injectFields(anObject)

@Resource Color foreground;

@Resource Icon icon;

Resource Injection II

▪ Pros:

 localizable by default

 easy to change visual properties

 visual properties can be edited by non-developers

 visual properties can change at runtime

▪ Cons:

 No compile-time safety

 Multiple sources

 Almost no IDE support

Persistent Application State

▪ An app should store some app state:

 window positions

 table column widths

 split bar positions

 etc.

▪ The JSR 296 aims to do this automatically

▪ See also the UIState library

SessionStorage, LocalStorage

▪ SessionStorage

 save(rootComponent, filename)

 restore(rootComponent, filename)

▪ LocalStorage

 abstracts per-user files

 works for unsigned apps too

▪ Preferences?

 already in the Java core

 limited in data size

Resource Variants Proposal

prefs.Action.text=${prefs.Action.text.[$os]}

prefs.Action.text.default=Preferences

prefs.Action.text.win=Optio&ns

prefs.Action.accelerator=

${prefs.Action.accelerator.[$os]}

prefs.Action.accelerator.default=${null}

prefs.Action.accelerator.mac=meta COMMA

Agenda

Lifecycle

Resources

Actions

Tasks

Misc

State of the JSR

State of the JSR

▪ Inactive

▪ Spec lead and EG failed to provide a
milestone draft in more than 18 month

▪ Otherwise: Zombie

Brief History: Before 2006

▪ Desktop Blueprints discussions

▪ Lack of desktop patterns

▪ Almost no Sun folks for the app-level

▪ Background tasks:

 Old unsupported SwingWorker

 Spin

 Foxtrot (synchronous)

2006

▪ Project started

▪ Project and spec lead: Hans Muller

▪ JSR submitted by Sun

▪ EG formed

▪ EG discussions about the feature set

▪ November: Major breakthrough for Swing

2007

▪ Initial public pre-draft prototype

▪ Removed nonsense

▪ Feb –Aug: Versions 0.1 – 0.4

▪ September: Version 1.0

▪ November: stuck

2008

▪ Jan – May: stuck

▪ May: Hans Muller left sun

 See "Hans's swan song"

▪ July: New spec lead Alexander Potochkin

▪ Aug: Beta versions

▪ Sep: stuck

2009

▪ March: Spec lead back again

▪ Some updates without EG discussion

Discussions

▪ EG almost dead

▪ Many messages in appframework mailing list

▪ API is work in progress, almost not discussed

appframework Implementation

▪ Showstoppers require API changes

▪ Several problems not even identified

▪ API may change dramatically

▪ Not ready for production

Alternative Implementations

▪ Commercial public JGoodies code

 Lifecycle, Resources, Actions, Safe SwingWorker

 Preferences

 Simple local storage

▪ Commercial non-public JGoodies code

 Adds Tasks, Blocking

 No Resource Injection

▪ Your framework moved towards the JSR 296

Summary

▪ JSR scope meets what people need

▪ Some features are pretty stable:

 Lifecycle, Resources, Actions

▪ Implementation[s] still buggy

▪ However: A key success factor!

▪ You can benefit from this JSR

References

▪ Google "JSR 296"

▪ appframework.dev.java.net

▪ appframework user mailing list

▪ www.jgoodies.com/articles

http://www.jgoodies.com/articles

A Swing Survivor's Guide

Desktop
Patterns

Data Binding JSR 296

First Aid for
Swing

Layout
Management

Meta Design

How to structure an app?

▪ Scott Delap: Desktop Java Live
(slightly outdated)

▪ JGoodies: Desktop Patterns & Data Binding

QUESTIONS AND ANSWERS

JSR 296 – SWING APP FRAMEWORK

JGoodies Karsten Lentzsch

