
Layout and
Panel Building in Swing

Karsten Lentzsch
www.JGoodies.com

Presentation Goal

Learn how to layout and implement

elegant and consistent panels quickly.

Speaker Qualifications

 Karsten builds elegant Swing Apps

 he provides libraries that complement Swing

 he works with emulated looks since 1995

 he assists others in visual design

 he writes about user interface issues

Agenda

 Introduction

 Analysis: What are the problems?

 Goals: What do we want to have?

 Concepts: How to achieve the goals?

 Solution: How to do layout right?

 Future: What comes next?

I. Introduction

How to succeed with Swing?

We focus on form-oriented
Panels

We focus on Usability

We aim to improve:

 Readability

 Legibility

 Elegance (appropriate choice)‏

 Usability

We focus on Forms – not Art

What is Design?

 To design is:

 to plan, to control,

 to assemble, to order, to align,

 to relate, to scale, to balance,

 to add value, to simplify

 to clarify

 Layout is an essential part in GUI design

Layout Roles and Actitivies

 Meta designer defines a style

 (Human) visual designer finds a layout

 Developer constructs the layout

 Builder code adds components to a container

 Layout manager computes and sets bounds

II. Analysis
What are the problems?

We're going to analyze:

 Problems that humans face

 Essentials for good design

 How to make layout easier

Problems we Face

 Tutorials and books demonstrate poor design

 Layout manager is difficult to learn

 Layout manager is difficult to work with

 Layout code is hard to read

 It's difficult to determine a layout from code

Layout Code Length

An example from Sun‘s Java tutorial

3 Layout Code Styles

Essentials: Symmetry

Essentials: Equal Widths

Essentials: Equal Line Heights

Essentials: Align Baselines

Essentials: Stable Layout

Essentials: Minimal Widths

Bad

Good

Good
 For example buttons need

a minimal width

 The button cannot provide
the minimum width;
buttons are narrow/wide
in different contexts

Scale with Font and Resolution

96dpi 120dpi

No Pixel Sizes in Screen Design!

Otherwise layout does not retain proportions

96dpi 180dpi

Other Weaknesses

 Simple things are difficult to do

 It's difficult to reuse design or layout

 No support for logical layout (Mac vs. PC)‏

 Out-of-the-box the layout lacks function

 LM implementation is hard to understand

 Layout Manager API is cluttered

 Layout Manager is slow

Layout Summary

The hard stuff is impossible…

… and simple things are difficult to do.

III. Goals
How do we want to layout?

Overall Goal

Make good design easy …

… and the bad difficult.

Goals I

 Build form-oriented panels quickly

 Solution covers 90% of all panels

 Novice users achieve good results

 Expert users save time

 Code is easy to read and to understand

 Design is consistent over panels, applications, team
members, and teams

Goals II

 Solution works well with visual editors that

 increase the productivity

 Improve the design quality

 The UI construction process is easy to learn

 Solution ships with well designed examples

 Solution ships with all parts out-of-the-box

IV. Concepts
How to achieve the goals?

How to achieve the goals?

 Use a grid for a single layout

 Use a grid system for many layouts

 Use a powerful layout specification language

 Allow string representations to shorten code

 Separate concerns

 Provide layers on top of the layout manager

Grids

 Grids are powerful, flexible and simple

 Grids are easy to understand

 Visual designers use grids

 to find a layout

 to align components

 Many people use grids implictly
when working with paper and pencil

Grid Systems

 Grids scale well

 Grid systems solve many of our problems

 Grid systems assist in finding good design

 They guide us, so we can focus on creativity

Layout Spec: Order and Languae

 Specify the layout first – then build the panel

 Use a powerful specification language

 Apply column and row alignments to cells

 So we can:
 determine the layout from the spec

 describe frequently used layout shortly

 describe complex design with a few lines

Layout Spec with Strings

 Specify the layout with object or
with a human-readable String representation

 As a result:

 Simple design requires two lines of code

 Complex design can be defined in a few lines

Separation of Concerns

 The layout manager shall compute and set
component bounds – nothing else

 Other classes jump in

 to traverse the grid

 to create frequently used components

 to extend the grid dynamically

 to ensure style guide compliance

 to build a panel from XML

Separation of Concerns:
Benefits

 The layout manager API is small

 We can combine helper parts freely

 Changes in a part don't affect the whole

 The layout system is powerful
– each part is simple

V. Solution
An implementation of our Concepts

Solution: JGoodies Forms

 Forms is a solution that implements our concepts
and meets our goals

 Learn how to work with the Forms

 Learn how Forms makes design easier

Example: A simple Form

How to build this simple form with Forms?

1: Requirements

Boss says:

”We need a panel to edit an address

with fields for: name, phone and email.“

2: Finding the Layout

 A visual designer produces a
design draft – with paper &
pencil or a visual design tool

 She hands it over to a
developer and says:
”Follow the Microsoft
Layout Style Guide!“

3a: Focus on Content

 Developer identifies
a default border

3b: Find the Grid

 Developer finds the grid

 Developer identifies column and row sizes

4: Specify the Layout

The developer specifies the layout:

FormLayout layout = new FormLayout(

“pref, 4dlu, pref”,

“pref, 3dlu, pref, 3dlu, pref”);

4b: Refine the Layout

Left-aligned labels, fields grow

FormLayout layout = new FormLayout(

“left:pref, 4dlu, pref:grow”,

“pref, 3dlu, pref, 3dlu, pref”);

4c: Refine Layout

Minimum widths; Abbreviations

FormLayout layout = new FormLayout(

“left:[75dlu,pref], 4dlu, pref:grow”,

“p, 3dlu, p, 3dlu, p”);

4d: Refine Layout

Default layout variables

FormLayout layout = new FormLayout(

“left:[75dlu,pref], $lcgap, pref:grow”,

“p, $lg, p, $lg, p”);

4e: Refine Layout

Custom layout variables

FormLayout layout = new FormLayout(

“$label, $lcgap, pref:grow”,

“p, $lg, p, $lg, p”);

5: Add Components

JPanel panel = new JPanel(layout);

CellConstraints cc = new CellConstraints();

panel.add(new JLabel(“Name:”), cc.xy(1, 1));

panel.add(nameField, cc.xy(3, 1));

panel.add(new JLabel(“Phone:”), cc.xy(1, 3));

panel.add(phoneField, cc.xy(3, 3));

...

5b: Use a Builder

Uses PanelBuilder (recommended)‏

PanelBuilder builder = new PanelBuilder(layout);

CellConstraints cc = new CellConstraints();

builder.addLabel(“Name:”, cc.xy(1, 1));

builder.add(nameField, cc.xy(3, 1));

builder.addLabel(“Phone:”, cc.xy(1, 3));

builder.add(phoneField, cc.xy(3, 3));

...

5c: Row Variable

Uses a row variable (not recommended)‏

PanelBuilder builder = new PanelBuilder(layout);

CellConstraints cc = new CellConstraints();

int row = 1;

builder.addLabel(“Name:”, cc.xy(1, row));

builder.add(nameField, cc.xy(3, row));

row += 2;

builder.addLabel(“Phone:”, cc.xy(1, row));

builder.add(phoneField, cc.xy(3, row));

...

5d: Use a high-level Builder

Uses DefaultFormBuilder

FormLayout layout = new FormLayout(

“l:p, $lcgap, p:g”); // Columns

// Add rows dynamically

DefaultFormBuilder builder =

new DefaultFormBuilder(layout);

builder.append(“Name:”, nameField);

builder.append(“Phone:”, phoneField);

builder.append(“Email:”, emailField);

return builder.getPanel();

6: Add a Default Border

DefaultFormBuilder builder =

new DefaultFormBuilder(layout);

builder.setDefaultDialogBorder();

...

Factories and Logical Sizes

 The ButtonBarBuilder2:

 builds consistent button bars

 honors the platform's style

 uses logical sizes
e.g.: gap between 2 related buttons

 The ButtonBarFactory:

 vends prepared button bars

 uses logical layout (Mac vs. PC)‏

Non-visual Builders

FormLayout

Container

Builder

Developer

Talks to

Extends and fills the grid

Layers in Forms

Buttons

Forms

FormLayout

Visual Editor

Bars

...

Layout manager

Non-visual builders

FactoriesLayout

Stacks XML

VI. Future Directions
What comes next?

How to achieve good design?

The 'average'
developer won‘t
design this dialog.

How can we assist
him in getting
such a design?

Templates and Wizards

Standard Dialog Library

Forms

NetBeans

FormLayout

Bars

Layout manager

Non-visual builders

Factories

Visual editors

Design Wizard

Stacks XML

IDEA

Buttons Layout …

Eclipse

Design templates

What comes next?

 More layout templates

 Visual form editors

 More non-visual builders

 Improved support for logical sizes

 Inter-panel constraints

 Support for perceived bounds

Summary

 We have analyzed layout problems

 We have learned how to address them

 We have seen a layout solution

 We have outlined further improvements

References

 Design Specifications and Guidelines
msdn.microsoft.com

 Aqua Human Interface Guidelines
www.apple.com/developer

 JGoodies Forms Framework
forms.dev.java.net

A Powerful Layout Manager

 ExplicitLayout, see www.zookitec.com

 is powerful

 provides styles – much like our builders

 supports non-rectangular layouts

 pixel sizes only

 no logical sizes

 available under the LGPL

Recommended Reading

Kevin Mullet & Darrel Sano

Designing Visual Interfaces

 All about: visual variables, scale, contrast,
proportion, organization and visual structure

 Many useful examples

 Interesting and easy to read

 250 pages with many screenshots

If you only remember one
thing:

Use professional L&Fs and use the Forms!

Questions and Answers

Question
Does Forms work with AWT and SWT?

Answer

FormLayout works with AWT not SWT

Additional layers work with Swing only

Question
How mature is the Forms release?

Does it meet production quality?

Answer

FormLayout is stable since Dec-2002.

The framework is ready for production.

End

Hope that helps!

Good luck!

